Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Mol Cell Biol ; 13(10): 712-720, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1319185

ABSTRACT

The coronavirus diseases 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 has caused more than 140 million infections worldwide by the end of April 2021. As an enveloped single-stranded positive-sense RNA virus, SARS-CoV-2 underwent constant evolution that produced novel variants carrying mutation conferring fitness advantages. The current prevalent D614G variant, with glycine substituted for aspartic acid at position 614 in the spike glycoprotein, is one of such variants that became the main circulating strain worldwide in a short period of time. Over the past year, intensive studies from all over the world had defined the epidemiological characteristics of this highly contagious variant and revealed the underlying mechanisms. This review aims at presenting an overall picture of the impacts of D614G mutation on virus transmission, elucidating the underlying mechanisms of D614G in virus pathogenicity, and providing insights into the development of effective therapeutics.


Subject(s)
COVID-19/transmission , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Aspartic Acid/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Glycine/genetics , Humans , Molecular Epidemiology , Mutation , SARS-CoV-2/genetics , Severity of Illness Index , Time Factors
2.
Biochem Biophys Res Commun ; 538: 108-115, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1139450

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus which binds its cellular receptor angiotensin-converting enzyme 2 (ACE2) and enters hosts cells through the action of its spike (S) glycoprotein displayed on the surface of the virion. Compared to the reference strain of SARS-CoV-2, the majority of currently circulating isolates possess an S protein variant characterized by an aspartic acid-to-glycine substitution at amino acid position 614 (D614G). Residue 614 lies outside the receptor binding domain (RBD) and the mutation does not alter the affinity of monomeric S protein for ACE2. However, S(G614), compared to S(D614), mediates more efficient ACE2-mediated transduction of cells by S-pseudotyped vectors and more efficient infection of cells and animals by live SARS-CoV-2. This review summarizes and synthesizes the epidemiological and functional observations of the D614G spike mutation, with focus on the biochemical and cell-biological impact of this mutation and its consequences for S protein function. We further discuss the significance of these recent findings in the context of the current global pandemic.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/genetics , Aspartic Acid/genetics , Binding Sites/genetics , Glycine/genetics , Humans , Mutation , Protein Domains/genetics
3.
Biochem Biophys Res Commun ; 538: 104-107, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1125671

ABSTRACT

The development of the SARS-CoV-2 pandemic has prompted an extensive worldwide sequencing effort to characterise the geographical spread and molecular evolution of the virus. A point mutation in the spike protein, D614G, emerged as the virus spread from Asia into Europe and the USA, and has rapidly become the dominant form worldwide. Here we review how the D614G variant was identified and discuss recent evidence about the effect of the mutation on the characteristics of the virus, clinical outcome of infection and host immune response.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/virology , Evolution, Molecular , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Aspartic Acid/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Glycine/genetics , Humans , Immunogenicity, Vaccine , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
4.
Infect Genet Evol ; 91: 104801, 2021 07.
Article in English | MEDLINE | ID: covidwho-1116816

ABSTRACT

Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) has first emerged from China in December 2019 and causes coronavirus induced disease 19 (COVID-19). Since then researchers worldwide have been struggling to detect the possible pathogenesis of this disease. COVID-19 showed a wide range of clinical behavior from asymptomatic to severe acute respiratory disease syndrome. However, the etiology of susceptibility to severe lung injury is not yet fully understood. Angiotensin-converting enzyme1 (ACE1) convert angiotensin I into Angiotensin II that was further metabolized by ACE 2 (ACE2). The binding ACE2 receptor to SARS-CoV-2 facilitate its enter into the host cell. The interaction and imbalance between ACE1 and ACE2 play a crucial role in the pathogenesis of lung injury. Thus, the aim of this study was to investigate the association of ACE1 I/D polymorphism with severity of Covid-19. The study included RT-PCR confirmed 269 cases of Covid-19. All cases were genotyped for ACE1 I/D polymorphism using polymerase chain reaction and followed by statistical analysis (SPSS, version 15.0). We found that ACE1 DD genotype, frequency of D allele, older age (≥46 years), unmarried status, and presence of diabetes and hypertension were significantly higher in severe COVID-19 patient. ACE1 ID genotype was significantly independently associated with high socio-economic COVID-19 patients (OR: 2.48, 95% CI: 1.331-4.609). These data suggest that the ACE1 genotype may impact the incidence and clinical outcome of COVID-19 and serve as a predictive marker for COVID-19 risk and severity.


Subject(s)
Amino Acid Substitution , COVID-19/epidemiology , COVID-19/genetics , Genetic Predisposition to Disease , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , SARS-CoV-2/pathogenicity , Adult , Age Factors , Aged , Alleles , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Aspartic Acid/genetics , Aspartic Acid/metabolism , Asymptomatic Diseases , COVID-19/mortality , COVID-19/virology , Comorbidity , Diabetes Mellitus , Female , Gene Expression Regulation , Gene Frequency , Host-Pathogen Interactions/genetics , Humans , Hypertension , India/epidemiology , Isoleucine/genetics , Isoleucine/metabolism , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Risk Factors , SARS-CoV-2/physiology , Severity of Illness Index , Survival Analysis
5.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064909

ABSTRACT

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Subject(s)
Amino Acid Substitution , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Aspartic Acid/analysis , Aspartic Acid/genetics , COVID-19/epidemiology , Genome, Viral , Glycine/analysis , Glycine/genetics , Humans , Mutation , SARS-CoV-2/growth & development , United Kingdom/epidemiology , Virulence , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL